Mangled extremity and peds ortho

Michael Swords, DO
Director of Orthopedic Trauma
Sparrow Hospital

Acknowledgement
CPT Daniel J. Stinner, MD
LTC Kevin L. Kirk, DO
LTC Joseph R. Hsu, MD
Brooke Army Medical Center
Fort Sam Houston, TX

Overview

• mechanism of injury
• assessment
• management
• outcomes

mechanism of injury

high energy

• lawn mower
• MCA
• MVA vs. bike
• MVA vs. pedestrian

lawn mower injuries

• common cause in children
• rider or bystander (70%)
• under 5 years old (78%)

high energy

<table>
<thead>
<tr>
<th>injury</th>
<th>Energy (foot-pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fall from curb</td>
<td>100</td>
</tr>
<tr>
<td>skiing</td>
<td>300-500</td>
</tr>
<tr>
<td>High velocity GSW</td>
<td>2,000</td>
</tr>
<tr>
<td>20 mph bumper injury</td>
<td>100,000</td>
</tr>
</tbody>
</table>
Lawn mower injuries

- High complication rates
- >50% poor results

Lawn mower injuries

- Often result in amputation

Lawn mower injuries

- Education/prevention key
- Under 14 out of yard: do not operate
- No riders other than mower operator

Assessment

- ABCs
- Associated injuries
- Tetanus
- Antibiotics

Initial Presentation in ER - History

- Mechanism of injury (How bad is the injury?)
 - High energy vs. low energy
 - Degree of contamination
 - Crush?
 - Ischemia time (if present)
- Comorbid conditions (How well are they going to heal?)
 - DM, smoker, PVD
- Social history (How will the injury/treatment impact their life?)
 - Job, education level, access to care, support system

Antibiotics

- +/- Aminoglycoside
- +/- Pen G or Clindamycin if Pen allergic
- No Cipro alone Patzakis MJ, J Orthop Trauma Nov 2000
- 24-72hr course
Assessment

- neurologic and vascular exam of extremity
- reduce all fractures
- circumferential exam noting all abnormalities
- open wounds usually obvious as tibia, ankle, foot are subcutaneous

Classification of Open Tibia Fractures

Gustilo and Anderson open fracture classification first published in 1976 and later modified in 1984
- In one study interobserver agreement on classification only 60%

open wounds

- assessed once then covered by saline soaked sterile gauze, splint
- digital camera or cell phone for documentation
- LEAVE ALONE
- classify in OR, evolve over time

decisions

- Limb salvage vs. amputate
- Involve other services
- Trauma, plastics, vascular as needed
- Do scoring systems help?
- Any absolute indications?

Loss of plantar sensation

- IS AN INDICATION FOR AMPUTATION
- IS this TRUE OR FALSE?

Quiz time
Amputation

- Lange proposed two absolute indications for amputation of tibia fractures with arterial injury: crush injury with warm ischemia greater than 6 hours, and anatomic division of the tibial nerve*

*Lange et al. J Trauma 1985

Survey of surgeons on factors considered in decision to amputate vs. reconstruct.

Factors Influencing the Decision to Amputate or Reconstruct after High-Energy Lower Extremity Trauma

#1 factor for Orthopaedic Surgeons and #3 for General surgeons

#1 for G.S.

LEAP study group

- 55 patient with insensate extremity
- 29 insensate amputated
- 26 insensate salvaged
- Compared to sensate matched control group

LEAP study- results

- No difference in outcomes between groups
- Insensate salvage and sensate control group had similar % with normal plantar sensation at 2 years – (55%)
- Only one pt. in insensate salvage group had no sensation at 2 years

Plantar sensation

- FALSE
- NOT AN INDICATION FOR AMPUTATION

Plantar sensation

- In 1987 Dr. Sigvard Hansen challenged the orthopaedic community “to define clear, concise, acceptable guidelines to help decide which severely damaged extremities are best handled by immediate amputation”

Mangled Extremity Severity Score

- An attempt to help guide between primary amputation vs. limb salvage
- In one study a score of 7 or higher was predictive of amputation*

 * Johansen et al. J Trauma 1991

Does a MESS of 8=amputate?

- Retrospective and prospective arms confirmed mess > or equal to 7 should amputate

MESS score of 8=amputate

- TRUE OR FALSE?

MESS >8= amputate

- Goal of scoring systems is to help guide treatment- but do they?

MESS of 8 = amputate

- Scoring systems are NOT predictive of successful limb salvage

Retrospective study demonstrated that available scoring systems are not predictive of successful limb salvage

- Mangled Extremity Syndrome Index (MESS)
- Mangled Extremity Severity Score (MESS)
- Predictive Salvage Index (PSI)
- Limb Salvage Index (LSI)

Mess of 8 = amputate

- The LEAP Study Group performed an independent, prospective evaluation of lower-extremity injury-severity scores, i.e. best available data
MESS of 8 = amputate

LEAP Study Group
• Not predictive of amputation
• Results: The analysis did not validate the clinical utility of any of the lower extremity injury-severity scores.
• Conclusions: Lower-extremity injury-severity scores at or above the amputation threshold should be cautiously used by a surgeon who must decide the fate of a lower extremity with a high-energy injury.

MESS of 8 = amputate
• FALSE
• Scoring systems cannot be relied on to make your decisions

Study 1
• Cost comparison between 16 patients with successful limb salvage and 18 with early amputation (<3 weeks)
• Median adjusted hospital charges
 • early amputation $65,624
 • Limb salvage $109,044
• p<0.006

Cost- Study 2
• 39 type IIIb or C open tibia fractures
• 21 limb salvage
• 18 amputation
• Collected data on hospitalization, costs, and employee compensation allowances

cost
• amputations more cost effective
• TRUE OR FALSE?

Study1
• Problem....
• Only compared hospital charges....
Cost- Study 2

- Significantly higher hospitalization costs in limb salvage
- Loss of wages benefits paid to salvage group 2.5 X longer

<table>
<thead>
<tr>
<th>Amputation</th>
<th>Reconstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital costs</td>
<td>$1,000 SF</td>
</tr>
<tr>
<td>Loss of wages benefits</td>
<td>$2,000 SF</td>
</tr>
<tr>
<td>Rehabilitation for loss of wages</td>
<td>$500 SF</td>
</tr>
<tr>
<td>Prosthetic</td>
<td>$500 SF</td>
</tr>
<tr>
<td>Total costs</td>
<td>$3,000 SF</td>
</tr>
</tbody>
</table>

Cost- LEAP Study

- 2 year costs (incl. prosthesis)
 - Salvage $81,316.00
 - Amputation $91,106.00
- Projected lifetime cost (incl. purchase/maint. prosthetics)
 - Salvage $163,282.00
 - Amputation $509,275.00

Amputation is more cost effective

- FALSE
- Amputation IS NOT more cost effective
- in pediatric population when life long prosthetic costs will be greater than those demonstrated

Do pts. With amputations have better function outcomes?

- Those undergoing limb salvage end up “drunk, demoralized, destitute and divorced” S. T. Hansen, MD

Amputations do better

- Pts with amputations have better functional outcomes?
 - TRUE OR FALSE?

Amputations have better functional outcomes

• Comparison of outcomes between groups led to recommendation for early amputation

LEAP study amputations have better outcomes

• Hypothesis- “those undergoing amputation would have better outcomes than those undergoing salvage”

• What they found….no difference in outcome at 2 and 7 years

LEAP Study
predictors of poor outcome

• Rehospitalization for a major complication, low education level, nonwhite race, poverty, lack of private health insurance, poor social-support network, low self-efficacy, smoking, and involvement in disability-compensation litigation

• Regardless of group-amputation or salvage

Amputation when...

• Significance systemic risk from extremity

• Not reconstructable

• When function would be better with prosthesis

• Social, financial, psychologic would not tolerate reconstruction

General Goals

• Retain clean, perfused tissue

• Debride all non-viable tissue

• Preserve length

• Preserve skin

• Balance forces of remaining muscles

• Ultimate goal: Return to functional level that meets the patient’s need with available anatomy

operative treatment

• urgent sharp surgical debridement of all non viable/contaminated tissue

• copious amounts of irrigation

• Skeletal stability

• NPWT

• Ideally under 6 hours from injury

• Multiple washouts a reality
True in limb salvage and amputation

If acute amputation being considered....
- Document need
- Have 2nd surgeon eval and document IN CHART
- Pictures/xrays invaluable to demonstrate severity

Primary BKA

Decision to Amputate
- When more difficult...
 - Discuss with the patient, patient’s family and other surgeons to determine best plan for the patient

salvage
- Cannot be done alone
- Trauma-to stabilize pt
- Ortho- to stabilize limb
- Vascular- to provide blood supply
- Plastics – to provide timely coverage

- Appropriate and coordinated early initial treatment key for successful outcomes
Case examples

• 16 yo male foot caught in farm equipment when working with his father

Initial care

Delayed bone graft

Case 2
2 months post injury

- Treated with below knee amputation
- Best for him functionally and with family

Employment, Sports, and Recreational Activities

- LEAP Study Group Data at 7 years
 - 58% of 423 patients had returned to work
 - 47% of amputees
 - 62% of limb salvage
 - Those who returned to work
 - limited in their ability to perform their job up to 25% of the time

Employment, Sports, and Recreational Activities

Never Say Never - You Will Be Proven Wrong

Military Experience \rightarrow 16.5% Return to Duty Rate

Many Amputees Prefer Non-Impact Sports and Activities

Although Running and Impact Sports Are Possible
Many Choose Other Activities because of the Discomfort and Sores that Can Result from Repeated Impact
ERROR: stackunderflow
OFFENDING COMMAND: ~

STACK: